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LEITER TO THE EDITOR 

Anomalous diffusion on kinetic gelation clusters in 
three dimensions 

N Bahadurt, H J HerrmanntS and D P Landau? 
t Center for Simulational Physics, University of Georgia, Athens, CA 30602, USA 
$ SPhT, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France 

Received 2 October 1986 

Abstract. Kinetic gelation, the growth model for radical copolymerisation, is investigated 
for the dynamic properties of its clusters at the gel point. We find that within numerical 
error bars the fractal dimension d, of a random walk on a cluster cannot be distinguished 
from that found for percolation clusters at pc in three dimensions. 

In order to describe the effects of growth on the sol-gel transition, specifically for the 
mechanism of radical copolymerisation, a model of kinetic gelation was proposed 
several years ago (Manneville and de Seze 1981, Herrmann et af 1982). This model 
showed differences in the critical behaviour with respect to the model of random 
percolation, which is the static description of the sol-gel transition (de Gennes 1976, 
Stauffer 1976). One of the most striking differences was found for the backbone of 
the incipient infinite cluster (gel) at the transition time. It was found (Chhabra er af 
1986) that the fractal dimension d:  of the backbone is considerably larger ( d ;  = 2.22) 
than that for percolation (d," = 1.74) in three dimensions. Since the backbone is 
responsible for dynamical properties of the gel (diffusion, electrical conductivity, 
phonon spectrum, elasticity, etc) and since d:  is the first exponent from the voltage 
distribution (de Arcangelis et af 1985), it seems interesting to directly investigate 
dynamical properties at the gelation time in kinetic gelation. We focused on the 
problem of the diffusion of random walkers on the infinite incipient cluster ( IIC)  and 
in the following, after introducing the model and the method used, we will present 
our results for the fractal dimension d, f 2. Thus this problem is also known under 
the name of anomalous diffusion. 

The model of kinetic gelation is defined as follows. At time T = 0, i.e. the initial 
state, one places on each site of a simple cubic lattice a functionality and on a fraction 
cI of the sites an initiator. The functionality is the maximum number of bonds that 
one will be allowed to form on the site. Then one starts to grow bonds by executing 
the following rule over and over again. Randomly choose one of the initiators and 
one of the six directions of the lattice. Then place a bond in this direction, at the same 
time shifting the initiator over this bond to the neighbouring site. If the placement of 
the bond is disallowed because one of the sites has already as many bonds as its 
functionality, no growth takes place at this time step. Should two initiators come to 
lie on the same site they annihilate each other. With increasing time more and more 
bonds will be grown. All sites that are connected to each other via bonds at a given 
time are said to belong to the same cluster. The sizes of the clusters increase and the 
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total number of clusters decreases during the growth. At one critical time T~ one cluster 
that spans the lattice from one side to the other will appear for the first time. At T~ 

this cluster is called the incipient infinite cluster ( I I C )  and is known to be a fractal. 
For T > rg an infinite cluster, which is not fractal, will be present. The fractal dimension 
df of the I I C  has been calculated in previous papers and it cannot be distinguished 
numerically from that of percolation, i.e. df = 2.5 and d = 3 (Herrmann et a1 1983, 
Herrmann 1986, Chhabra et a1 1986). 

Since the I I C  is fractal one can expect anomalous diffusion behaviour. Placing a 
random walker on the cluster we are interested in the average distance, R ( t ) ,  the 
walker will have moved from the site on which it was originally placed after having 
performed t nearest-neighbourjumps, where the walker can only jump to sites belonging 
to the cluster. We are also interested in the probability Po( t )  that at the tth jump the 
walker returns to the site on which it was placed in the beginning. Anomalous diffusion 
is given by the relation 

t -  Rd* (1) 

where the exponent d, is interpreted as the fractal dimension of the trace of the walker 
and will, in the anomalous case, be generally larger than two. If d,> df the number 
N( t )  of distinct sites visited by the walker goes like N -  R d f  and the probability of 
return is N- ' .  Thus one finds using (1) 

(2) Po - t - d / '  

where d' = 2df/d,. 
For percolation in d = 3 one has the numerical estimates df = 2.53 (Margolina et 

a1 1982) and d, = 3.76 (Derrida et a1 1983). We only mention that d, is related to the 
exponent t describing how the electrical conductivity vanishes at p c  by t = 
(d, - df+ d -2)v and to the exponent d' - 1 describing how the phonon spectrum 
vanishes for small frequencies. 

To calculate R and Po we use the method of exactly solving the probability 
distribution of a random walker for a given initial site and a given underlying cluster 
(Ben-Avraham and Havlin 1982, Hong et a1 1984). We consider only sites with 
functionality four. Fixing a value for c, we determine the concentration p c  of bonds 
at the gel time T~ via finite-size scaling by methods described in several previous papers 
(Herrmann et al 1982, 1983, Chhabra et a1 1986). We grow bonds in the way described 
above until we reach the concentration pc  of bonds and stop the growth there. For 
c,  = 3 x which is the value we used, p c  = 0.0853. Having a configuration at pc  we 
find the largest cluster and then randomly pick a site more or less in the centre of the 
cluster. From this site we want to let the random walker start. So at time t = 0 we put 
the probability P(0)  = 1 on this site. At t = 1 we put on each nearest neighbour (of 
this site) that belongs to the cluster the probability P ( l )  = l / q  where q is the number 
of these neighbours. We proceed this way so that at each time we have sitting on all 
sites the exact probability that the random walker is on this site. At a time t the value 
of Po(?) is simply read off as the number sitting on the initial site at the tth iteration. 
The radius R 2 (  t )  is obtained by taking the mean over the squares of the distances of 
all sites of the cluster from the initial site weighted by the probability sitting on each 
of these sites at time t. 

The results that we obtain for R 2  and Po are shown in a log-log plot in figure 1. 
The data seem to approach straight lines quite well, yielding from R 2  the exponent 
d, = 3.2 f 0.2 (see (1)) and from Po the value d,/d, = 0.71 * 0.05 (see (2)). These data 
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Figure 1. R 2 ( r )  and P,,(r) in a log-log plot as a function of r for L= 60 and averaged over 
100 samples, pc = 0.0853. 

would seem to give an exponent d ,  slightly smaller than the corresponding value for 
percolation; however, there are two systematic effects that should be taken into account 
in the extrapolation of the raw data. First of all, there are finite-size effects since we 
go up to 3000 time steps although our box only has a linear size L = 60. Secondly, 
there are corrections to scaling for shorter times which are responsible for the curvature 
that one can see in figure 1 .  

To take these effects into account, we make the finite-size scaling assumption 

R 2 =  L2f (Ldw/ t )  

Po = L-dfg( Ld-/ t )  
(3) 

where f and g are scaling functions of the scaled variable x = Ld-/ t and the corrections 
to scaling ansatz 

RZ a: t 2 / ' W (  1 + At') 

P o x  t-'fldw( 1 + Bt') 
(4) 

where A is the correction to scaling exponent and A and B are the corresponding 
amplitudes. Combining (3) and (4) we get 

RZ = L 2 f [  Ld-r-'( 1 + AfA)-d~ /2 ]  
(5) 

First we investigate only the finite-size effects, i.e. we evaluate (3) alone. We also 
made calculations for L = 30 and 40 averaging over 200 samples for each size. In figure 
2 we show the finite-size scaling functions f and g of (3) in a log-log plot. The 
exponents d, and df were chosen so as to produce data collapse onto a single curve 
for all sizes L. In addition, we should get straight lines in the limit of large x = Ld-/ t 
with slopes f(x)CCx-2'd- and g ( x ) K x d f ' d -  in order to regain ( 1 )  and (2) for L + m .  
For large times a reasonably good data collapse is found for d ,  = 3.7 f 0.1 and df = 
2.5 f 0.2 as seen in figure 2. For large x, i.e. short times, the slopes yield values for d, 
around 3.2; that means the picture is not perfectly consistent. The reason for this small 
inconsistency comes from the corrections to scaling which are responsible for the 
scattering of the data of different L at small times seen in figure 2. So in figure 3 we 

Po= L-d f i [Ld- r - ' ( l+  Bt 'pdf ] .  
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Figure 2. Log-log plot of f ( x )  = R 2 / L 2  and g(x) = POLd( as a function of x = L d - / f  with 
d ,  = 2.5 and d ,  = 3.7; p ,  = 0.0853. Values of L:  0, 30; e, 40; x, 60. 
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Figure 3. Log-log plot of the scaling functions (a )  9’ and ( 6 )  f according to ( 5 )  using 
d ,  = 2.5, d,  = 3.7, A = -0.6, A = -0.7, B = -1.0, pc  = 0.0853. The broken lines are guides 
to the eye with slopes ( a )  d , / d ,  and ( b )  - 2 / d , .  Values of L: 0,  30; e, 40; x,  60. 

made a scaling plot according to ( 5 )  and the parameters A, A and B were fitted to 
have the best data collapse possible. Now the slope in figure 3( b) at small times gives 
an asymptotic value consistent with d ,  = 3.7 shown in the figure. Also in figure 3(a )  
the asymptotic slope is consistent with the predicted value. Thus, we see that it is 
important that both finite-size effects as well as limitations due to finite walk time are 
considered. 

Summarising, we find that d ,  (and thus t and d )  for kinetic gelation does not 
deviate within numerical accuracy from the percolation value in d = 3. This suggests 
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that, although the backbone is different in kinetic gelation, the transport properties on 
the gel at T* might be the same for kinetic gelation and percolation. It would be 
interesting to see if the same holds for the experimentally important value of the 
exponent for the elasticity (Adam et al 1981). 

This research was supported in part by National Science Foundation grant no 
DMR8603605. 
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